Extensions 1→N→G→Q→1 with N=C80 and Q=C22

Direct product G=N×Q with N=C80 and Q=C22
dρLabelID
C22×C80320C2^2xC80320,1003

Semidirect products G=N:Q with N=C80 and Q=C22
extensionφ:Q→Aut NdρLabelID
C801C22 = D80⋊C2φ: C22/C1C22 ⊆ Aut C80804+C80:1C2^2320,535
C802C22 = D5×D16φ: C22/C1C22 ⊆ Aut C80804+C80:2C2^2320,537
C803C22 = C16⋊D10φ: C22/C1C22 ⊆ Aut C80804+C80:3C2^2320,541
C804C22 = D16⋊D5φ: C22/C1C22 ⊆ Aut C80804C80:4C2^2320,538
C805C22 = D5×SD32φ: C22/C1C22 ⊆ Aut C80804C80:5C2^2320,540
C806C22 = C5×C16⋊C22φ: C22/C1C22 ⊆ Aut C80804C80:6C2^2320,1010
C807C22 = D5×M5(2)φ: C22/C1C22 ⊆ Aut C80804C80:7C2^2320,533
C808C22 = C2×D80φ: C22/C2C2 ⊆ Aut C80160C80:8C2^2320,529
C809C22 = C2×C16⋊D5φ: C22/C2C2 ⊆ Aut C80160C80:9C2^2320,530
C8010C22 = C10×D16φ: C22/C2C2 ⊆ Aut C80160C80:10C2^2320,1006
C8011C22 = D5×C2×C16φ: C22/C2C2 ⊆ Aut C80160C80:11C2^2320,526
C8012C22 = C2×C80⋊C2φ: C22/C2C2 ⊆ Aut C80160C80:12C2^2320,527
C8013C22 = C10×SD32φ: C22/C2C2 ⊆ Aut C80160C80:13C2^2320,1007
C8014C22 = C10×M5(2)φ: C22/C2C2 ⊆ Aut C80160C80:14C2^2320,1004

Non-split extensions G=N.Q with N=C80 and Q=C22
extensionφ:Q→Aut NdρLabelID
C80.1C22 = C16.D10φ: C22/C1C22 ⊆ Aut C801604-C80.1C2^2320,536
C80.2C22 = C5⋊D32φ: C22/C1C22 ⊆ Aut C801604+C80.2C2^2320,77
C80.3C22 = D16.D5φ: C22/C1C22 ⊆ Aut C801604-C80.3C2^2320,78
C80.4C22 = C5⋊SD64φ: C22/C1C22 ⊆ Aut C801604+C80.4C2^2320,79
C80.5C22 = C5⋊Q64φ: C22/C1C22 ⊆ Aut C803204-C80.5C2^2320,80
C80.6C22 = D163D5φ: C22/C1C22 ⊆ Aut C801604-C80.6C2^2320,539
C80.7C22 = D5×Q32φ: C22/C1C22 ⊆ Aut C801604-C80.7C2^2320,544
C80.8C22 = D805C2φ: C22/C1C22 ⊆ Aut C801604+C80.8C2^2320,546
C80.9C22 = SD32⋊D5φ: C22/C1C22 ⊆ Aut C801604-C80.9C2^2320,542
C80.10C22 = Q32⋊D5φ: C22/C1C22 ⊆ Aut C801604C80.10C2^2320,545
C80.11C22 = SD323D5φ: C22/C1C22 ⊆ Aut C801604C80.11C2^2320,543
C80.12C22 = C5×Q32⋊C2φ: C22/C1C22 ⊆ Aut C801604C80.12C2^2320,1011
C80.13C22 = D20.5C8φ: C22/C1C22 ⊆ Aut C801604C80.13C2^2320,534
C80.14C22 = D160φ: C22/C2C2 ⊆ Aut C801602+C80.14C2^2320,6
C80.15C22 = C160⋊C2φ: C22/C2C2 ⊆ Aut C801602C80.15C2^2320,7
C80.16C22 = Dic80φ: C22/C2C2 ⊆ Aut C803202-C80.16C2^2320,8
C80.17C22 = C2×Dic40φ: C22/C2C2 ⊆ Aut C80320C80.17C2^2320,532
C80.18C22 = D807C2φ: C22/C2C2 ⊆ Aut C801602C80.18C2^2320,531
C80.19C22 = C5×D32φ: C22/C2C2 ⊆ Aut C801602C80.19C2^2320,176
C80.20C22 = C5×SD64φ: C22/C2C2 ⊆ Aut C801602C80.20C2^2320,177
C80.21C22 = C5×Q64φ: C22/C2C2 ⊆ Aut C803202C80.21C2^2320,178
C80.22C22 = C10×Q32φ: C22/C2C2 ⊆ Aut C80320C80.22C2^2320,1008
C80.23C22 = C5×C4○D16φ: C22/C2C2 ⊆ Aut C801602C80.23C2^2320,1009
C80.24C22 = D5×C32φ: C22/C2C2 ⊆ Aut C801602C80.24C2^2320,4
C80.25C22 = C32⋊D5φ: C22/C2C2 ⊆ Aut C801602C80.25C2^2320,5
C80.26C22 = C2×C52C32φ: C22/C2C2 ⊆ Aut C80320C80.26C2^2320,56
C80.27C22 = C80.9C4φ: C22/C2C2 ⊆ Aut C801602C80.27C2^2320,57
C80.28C22 = D20.6C8φ: C22/C2C2 ⊆ Aut C801602C80.28C2^2320,528
C80.29C22 = C5×D4○C16φ: C22/C2C2 ⊆ Aut C801602C80.29C2^2320,1005
C80.30C22 = C5×M6(2)central extension (φ=1)1602C80.30C2^2320,175

׿
×
𝔽